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Abstract— Unmanned Aircraft Systems (UASs) are techno-
logically advancing at such a rapid pace that domain experts are
now highly concerned of the potential misuse of the technology
that can be used for unlawful actions with detrimental effects.
The most effective measure to counteract the operation of rogue
drones are electronic anti-drone systems that in one way or
another intercept the normal operation of a rogue agent. In this
work we develop an intelligent pursuer drone that implements
novel lightweight functions to meet all necessary interception
steps (i.e., detection, tracking and interception) in addition to
self-localizing using signals of opportunity in order to maintain
perception when performing wireless jamming against a rogue
drone.

Index Terms—UAS, Counter-Drone, Machine Learning,
Computer Vision, GPS jamming

I. INTRODUCTION

Unmanned Aircraft Systems (UASs) have attracted enor-
mous interest from both the scientific and industrial commu-
nity due to their potential transformative effect for a great
number of application scenarios. Based on the latest figures
on UAS-related technology, consumer-drone demand will
increase sharply over the next few years with the global
market for drone technology reaching 43.1B$ by 2024 [1].

However, the increasing improvement of UAS capabilities
with higher levels of intelligence and autonomous features
can also potentially introduce new threats to public spaces
and critical infrastructures. The anonymous and uncontrolled
purchase and use of drone platforms has led to the need for
technology-specific security systems to counter potentially
malicious actions.

Importantly, there are no sufficient solutions to date to
effectively detect, track, and intercept rogue drones in a
safe manner. The research community has concentrated on
innovative detection techniques, such as RF signal sniffing,
sensors, and computer vision [2]. In addition, interception
techniques include net-casting, RF denial systems, and high-
power lasers [3], [4]. Nevertheless, as mentioned in [5],
substantial further work is required for effective UAS in-
terception solutions.

Safety for critical infrastructure systems is crucial as
indicated in the recent drone incidents at London’s Gatwick
and Heathrow airports, where drones flew over restricted
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airspace, presumably targeting the interruption of air traffic.
In those incidents, British police successfully countered the
drones, by using wireless jamming to block the UASSs’
remote control functionality. As reported in [6], jamming is
the most effective interception method. However, the use of
wireless jamming over extended ranges may severely affect
normal operation of systems that depend on such signals as
recently highlighted by the Federal Aviation Administration
(FAA).

In accordance, this work proposes a fully autonomous
aerial counter-drone system which is used to detect, track,
and jam a rogue drone. Upon alerted of the target, the
counter-drone system takes-off with the aim of detecting and
tracking the rogue drone before intercepting its operation via
wireless jamming. Importantly, and to maintain navigation
in space, the pursuer drone self-localizes using a novel tech-
nique based on signals of opportunity as it will be discussed
in Section V. Figure 1 depicts the high-level process of our
proposed system to aid understanding.

The rest of this work is structured as follows. Related work
is included in Section II and details of the four system com-
ponents that comprise the proposed HorizonBlock counter-
drone system are included in Section III, Section IV, and
Section V, respectively. Section VI elaborates on implemen-
tation and integration aspects of the proposed system and
details prototype tests. Concluding remarks regarding this
work are presented in Section VII.
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Fig. 1: High level view of the proposed HorizonBlock
counter-drone system.
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II. RELATED WORK

Industry leaders in the safety and security sector and
organizations that specialize in military and law enforcement
technologies, have developed several counter UAS (CUAS)
solutions that are capable of detecting, localizing, and neu-
tralizing malicious UAVs. The CUAS solutions currently
available in the market can be divided into three main
categories as summarized below:

o Stationary CUAS systems: Stationary solutions have
increased range of surveillance due to perpetual access
to power resources. These solutions have relatively
high cost and require power amplifiers that extent the
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neutralization range. This could potentially result in
interference with legitimate telecommunication systems
as well as pose a risk to public health.
Portable CUAS systems: Portable solutions have the
advantage of mobility. However, due to their small size
and simplified architecture, they are not able to au-
tonomously detect and localize UAS; rather, the user has
to manually aim towards the malicious UAS. Addition-
ally, the neutralization capabilities of such equipment
have very limited range, usually several hundreds of
meters.
Aerial CUAS systems: Aerial solutions are installed on
UASs with the ability to patrol a specific area and detect
and track any malicious UAS in the vicinity before
performing neutralization. This kind of solution requires
more complex and sophisticated algorithms. Neverthe-
less, this solution can result in minimal wireless interfer-
ence due to the close proximity between the pursuer and
rogue drones. Furthermore, the range of such a solution
closely relates to the flight characteristics of the pursuer
drone and particularly the level of flying autonomy.

Counter UAS technologies have already attracted ample
research interest. The various existing works focus primarily
on detecting the presence of a rogue drone and developing
techniques to take control of it or intercept its operation.
Specifically, in [7] an anti-UAS system has been developed
that combines multiple passive surveillance technologies to
perform detection, localization, and radio frequency jamming
for neutralization. A relatively recent work detailed in [9],
describes an aerial CUAS for catching a rogue UAV using a
net carried and launched by the pursuer UAV. However, this
approach assumes that the target has already been detected
accurately in terms of position and velocity. In [7] and [8]
an RF signal jamming technique has been implemented that
interferes with the communication link between the UAV
and the ground station resulting in loss of the control link.
The approach in [8] uses a radar to detect the target, while
techniques developed in [7] use audio signals, computer
vision, and RF analysis for the detection of the target.

Other research has focused on restricting the access of
a malicious UAS in a specific area by taking advantage of
the UAS’s subsystems, also known as a man-in-the-middle
attack. More specifically, the authors in [10] exploit WiFi
vulnerabilities of the UAS communication link to launch
network-based attacks. Moreover, [11] describes an attack on
the UAS’s dynamic state estimation by exploiting the vulner-
abilities of common state estimation algorithms to misguide
its navigation systems and therefore prevent it from flying
inside a restricted area. Another relevant work, presented in
[12], considers a swarm of patrolling UAVs positioned in a
formation around the malicious drone in such a way to enable
the collision avoidance system of the malicious drone and
therefore limit its movement. Additionally, the swarm moves
accordingly to escort the intruder outside of the restricted
area.

Contrary to the aforementioned studies, the proposed
system presents an innovative, autonomous, and low-cost
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approach to counteract the mission of rogue drones in a safe
and accurate manner.

III. DETECTION AND TRACKING

Since commercial off-the-shelf UASs have flight times of
not more than 30 minutes, scanning an area trying to detect
possible threats is not very effective. Hereafter, we assume
that a ground system is in place to alert of any intrusion and
trigger the pursuer drone activation. Thereafter, the pursuer
drone takes on the task of detecting and tracking the target,
intercepting it mid-air by closing up and initiating jamming,
while ensuring that it maintains situational awareness and
perception of the environment using signals of opportunity
as it will be discussed in the sequel.

A. Detection

Drone detection can be achieved using computer vision
techniques and/or convolutional neural networks (CNN). In
this work, a CNN is utilized in order to precisely detect
the target. More specifically, Darknet V3 [13] is used, as
Darknet’s YOLO network is quite popular for its detection
performance, especially when it comes to the smaller version
of it, tiny YOLO V3. This one is mostly preferred and well-
suited for real-time detection of drones that can travel with
a top speed of 70km/h. The first step towards detection is
the creation of a dataset and labeling images of drones.
Currently, a dataset of approximately 700 drone images is
utilized, taken at an approximate distance of up to 30m at
different angles (side view, top/bottom view, etc.). Figure 2
illustrates an example of the detection of a drone in an
environment which was not provided during training.

Detection was evaluated on a laptop using Intel’s i7-
7700HQ processor and an Nvidia Geforce GTX 1060 graph-
ics card achieving approximately 15 — 20 frames per second
(FPS) on a 720p video stream from the UAS. Further, an
NVIDIA Jetson Nano embedded on the drone was tested,
detecting up to 15 FPS, without skipping any frames, using
the latest CUDA-compatible [14] OpenCV’s [15] library
build.

B. Tracking

After detecting the rogue drone, the counter-drone sys-
tem’s tracking algorithm is engaged. In order to achieve
fast tracking, the detection’s bounding box is utilized. Upon
achieving a detection bounding box, a normalization of the
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coordinates is performed using the video stream’s size (z-
width, y-height). Thereafter, a position correction takes place
in order for the pursuer to move in closer to the rogue
drone. Initially, the area of the detection box is compared
in successive frames and if the area is larger than 10% of
the image, it is considered that the target is in very close
proximity, forcing the pursuer drone to fall back. On the
other hand, if the detection box is smaller than 6% of the
image, then the target is considered to be at a distance, thus
the pursuer moves closer to the target. Hence, the effective
jamming range is set so that the detected bounding box is
within 7—10% of the captured image. Clearly, depending on
the camera’s field of view and the jamming intensity, these
parameters can be adjusted accordingly.

With respect to the flight control steps, signals for the
yaw and throttle of the pursuer flight controller are provided
based on the detected box position and the current pursuer’s
posture. The thresholds for the yaw and throttle movement
signals are set to 0.4 — 0.6 (after normalization) of the width
and height of the image. Algorithm 1 below provides a high-
level description of the steps followed in order to track the
rogue drone. Clearly the exact motion turning rates depend
on the pursuer drone flight characteristics.

Algorithm 1 Tracking the rogue drone.
Input Camera’s video frame

1: Detect drone in the frame
2: if drone detected then

3: Normalize box x, y center, based on image size
4 procedure CHECK BOUNDING BOX POSITION
5: if box > area threshold max then

6: signal ‘move back’ //collision avoidance
7: else if box < area threshold min then

8: signal ‘move towards’

9: elsesignal ‘stop moving’ //pursuer stopped
10: if box.x < X threshold min then

11: signal ‘turn anti-clockwise’

12: else if box.x > X threshold max then

13: signal ‘turn clockwise’

14: elsesignal ‘stop turning’

15: if box.y < Y threshold min then

16: signal ‘rise up’

17: else if box.y > Y threshold max then

18: signal ‘move down’

19: elsestop rising

20: Execute turn, rise, move

21: else

Return to home base

IV. JAMMING

Jammers emit interference signals at specific wireless
bands in an effort to interfere with the communication link
between the transmitter and the receiver (e.g. the satellite
and GNSS receiver on the drone). Furthermore, these inter-
ference techniques typically intend to transmit continuously

400

overpowered radio signals on the GNSS bands forcing the
receiver to provide erroneous position, velocity, and time
(PVT) information during the navigation process. Currently,
this is the most effective wireless interception technique.

In this work, a jamming system is implemented utilizing
an SDR (Software Define Radio) and LabVIEW software as
shown in Fig. 3. SDR systems are well fitted for this task,
since they tend to be robust, reliable, and can transmit various
different types of signals. In our case, the LabVIEW software
is used to generate the interference baseband signals, and a
USRP B200 SDR radio card, paired with an omnidirectional
antenna, is transmitting these signals to disrupt the GNSS
receiver.
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Fig. 3: Hardware and software implementation of the jam-
ming system.

To validate the performance of the jamming module,
various interference signals were generated and emitted by
the USRP B200 in an effort to jam the GPS receiver of
a rogue drone. The most common technique is to transmit
a continuous wave using amplitude modulated pulses. The
various signals that the jammer can generate are described
as single-tone, multi-tone (multiple signal waveforms with
different frequency components), chirp signals with instan-
taneous frequency changing over time, and a sinusoidal pulse
train. The interference signals are represented in the time and
frequency domain as shown in Figs. 4 and 5, respectively.

Using the LabVIEW software tool and the SDR hardware,
the continuous wave signals are up-converted to RF GPS
frequency bands, specifically in L1 at 1.57542GHz and
transmitted via the antenna.

V. RELATIVE LOCALIZATION

The proposed counter-drone system can detect, track,
and jam a rogue drone. However, the use of a jamming
component to neutralize the target can disrupt the GNSS
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signals of the pursuer drone as well. As a mitigation mea-
sure, the proposed system incorporates a relative positioning
component utilizing signals of opportunity (SOP) in order
to self-localize and safely return to an initial position when
GNSS signals become unavailable.

A. Signals Of Opportunity

Clearly, GNSS signals quickly become unavailable in the
presence of interference (including jamming or spoofing)
[18]-[20] and in deep urban canyons [21]-[23]. In turn,
navigation systems utilize an inertial navigation system (INS)
[24] and light and range sensors [25] to determine their
location in the absence of GNSS signals. The shortfall of
these solutions, including data degradation, loss of signal
due to multipath and antenna obstruction, has led to the
exploration of alternative approaches for localization [21],
[26].
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Lately, the utilization of SOPs has been introduced as
a viable alternative for navigation, when GNSS signals
become unstable/unavailable [16], [23], [27]. SOPs (e.g.,
AM/FM radio, cellular, TV signals, etc.) are fit for navigation
purposes because these signals are readily accessible [24],
[28].

B. Relative Positioning Component Framework

This section examines how relative localization can be
achieved using signals that are already available in the envi-
ronment, and derives an online procedure for the exploitation
of these signals for positioning in the current GNSS-denied
environment. The relative positioning component (RPS) con-
siders the signal characteristics over a large spectrum of fre-
quency bands and derives a tracking algorithm to accurately
estimate the pursuer drone’s trajectory in space and time
using an arbitrary set of unknown reference positions.

Complementary to prior investigations, the RPS achieves
relative localization without taking into consideration the
location of the transmitters. In addition, it does not employ
any GNSS signal information for the relative trajectory
extraction and is using only the SOPs measurements. Fur-
thermore, an extended Kalman filter (EKF) approach and an
optimal learning (OL) methodology are utilized to improve
the performance of the location estimate in an online fashion.

Algorithm 2 Relative positioning algorithm.
Input RSS dataset at each route point

Frequency spectrum at the current position of the moving
vehicle scanned and relative transmitters set
2: procedure RELATIVE POSITION CALCULATION
Frequency spectrum analyzed and mean RSS 92
computed.
0 utilized to calculate the relative distances using
the path-loss model from the transmitters set

5: NMultilatteration applied to estimated locations
;{; —n
—~N—
6: EKF on x*
7: When the number of samples N —n reach a threshold

value OL procedure starts

Knowledge gradient (KG) policy applied

Best decisions of the frequency feature set Fi™ "
extracted applied on relative position calculation proce-
dure

Relative position szO_N” estimated

The RPS-OL procedure ends when n = N

10:
11:

The proposed RPS algorithm employed by the pursuer
drone is shown in Alg. 2. The first step of the algorithm
considers the collection of received signal strength data from
a particular frequency spectrum. The sweep of the spectrum
can be achieved using a software defined radio onboard
the pursuer drone. The spectrum sweep X collected at an
arbitrary instance k is then aggregated into [ blocks and the
mean 0! RSS value of each block [ is computed. Using
92 and a path-loss model to accurately model the signal
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propagation in the given environment, then the estimated
distances from [ reference locations can be derived. In turn,
the position of the drone can be extracted using known
multilateration techniques as in [30] and [31]. Extended
Kalman filtering is then applied to further improve on the
location accuracy. To implement this, a measurement and a
motion model of the pursuer drone are utilized as follows:

Sl o

sin ¢, 0 Uy,
g1 =/ (wl — )% + (yl — 2)

where [ y]T denotes the current position in 2D
and zp41 = f(xp,ur) denotes the next estimated position
calculated using the motion model with:

Ug,

Tppr = xp + T {

Y)? + ny,

of
axk+1 ‘ ky Uk ( )
and the measurement model di1 = h(zg, ng) with:
oh
= e |k “4)
Tk4+1

where wuj denotes the linear velocity readings used as an
input to the motion model, while ¢ is the heading angle of
the moving vehicle. wy, represents the process noise with zero
mean normal distribution and covariance Q = (0.1)I2,2. The
measurement model relates to the range between the route
points with xl representing the position estimates extracted
using the SOPs and nj the zero mean measurement noise
with constant covariance R = 0.01. In the prediction step,
the velocity, heading angle readings, and the motion model
are utilized to produce a state at a given timestep k. Using the
measurement model and importing the range measurements
zr4+1 extracted using the SOP values from the previous
steps of RPS, the correction step takes place and a relative
trajectory is created. The relative coordinates using the EKF
are then calculated as follows:

i1 = T + K(2p41 — dit1) @)

v 1 2 F

X*:['rk+17 xk-‘rl? veey $k+1] (6)
In addition, and to achieve online execution, the

information-rich frequency bands are selected instead of the
complete spectrum by periodically evaluating their strength.
Toward this end, a reliable and robust online relative localiza-
tion using an OL technique as discussed in [32] is employed.
A ranking problem regarding useful frequencies is solved
by employing a linear regression problem to estimate the
pZ of ground truth values for the OL technique using X*
at a subset of samples N — n. As the exact value of the
true mean (true position) remains unknown, the following
equations are utilized to estimate a set of alternative values
that can characterize the ground truth at samples N — n:

i =0"X +e (7)

where 6 represents a vector of weights with random initial
values, while X is the full frequency dataset. As the experi-
ment repeats itself, the weights converge and the y; estimates
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of the ground truth values (;7) utilizing a decision policy
(7). Using a recursive algorithm (Bayesian) and assuming to
have an p™(x) vector of beliefs with covariances X" (z) the
means and covariances keep updating to calculate the best
choices F1¥ ™™ utilizing a knowledge gradient policy (KG)

[33], [34].
n n—1 1 n—1_n_n

0" =40 — X" e )
€ = Mn _ en,—lxn—l (9)

1
wno— Zn—l _ _(Zn—lmn(xn)TEn—l) (10)

,Yn
P =1+ (2" (11)
pr (@) = B R+ W (12)
Wyt =t 4 et (13)

The XX& value represents the measurement decisions ex-
tracted utilizing X; the index of features that can characterize
the true mean with the higher accuracy. As a final step, using
XKG the Fi ™™ is calculated and applied on RPS. The
a“ivo " iteratively estimated until n = N leading to an online
relatwe trajectory computation problem as follows:

XONL = [ TONLys TONLysys -3 TONLysn] (14)

C. Experimental results

Several field experiments were conducted utilizing var-
ious transmission bands and using the proposed RPS-OL
in order to validate our approach. A broadband antenna
mounted on a SDR module onboard was used to obtain SOP
signals across a large frequency spectrum (via HackRF-one
software-defined radio). Figure 6 illustrates the hardware and
software set-up of the system. The tracking performance of
RPS-OL is assessed by calculating the relative trajectory of
the moving medium and comparing it with the true target
position (GPS trajectory - decimal degrees converted into
meters). The deviations between the real and the relative
trajectory are illustrated in Fig. 7 and statistical analysis
utilizing the distance difference (in meters) starting from
an initial point is shown in Fig. 8. It is evident that RPS-
OL achieves accurate localization that can be adopted in the
absence of GNSS signals (including the situation where there
is jamming interference).

Hardware Implementation

N

~

Relative

Positioning

Moving HackRF- one
Sytem w (SDR) Jetson Nano |—>| Odometry |
Components

Python & MATLAB & MySQL
backbone

Fig. 6: Block diagram of RPS-OL software and hardware
implementation.
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VI. SYSTEM INTEGRATION

For integrating all aforementioned counter-drone modules
on a single UAS agent, both hardware and software solu-
tions are employed. This section analyses the hardware and
software aspects of the integration that provide the capability
of having an autonomous counter-drone agent. This solution
can still receive telemetry data from the agent and transmit
any commands to the agent in case there is a need to utilize
the Robot Operating System (ROS) [29].

A. Hardware Integration

In order to combine all pre-aforementioned mechanisms
into a single automated system, there is a need for a
processing unit that would be physically small enough to
be embedded on the agent but yet computationally powerful
enough to cover all needs. At the same time, the processing
unit needs to be compatible with all mechanisms. The
NVIDIA Jetson Nano Developer Kit was chosen board, as
it can be used to implement and integrate all mechanisms
of an autonomous, intelligent agent. This agent can detect,
track, and counter a malicious UAV while being able to
perform self-localization in order to ensure its safe return.
The Jeston Nano is equipped with an 128-core Maxwell
graphics processing unit that supports NVIDIA’s CUDA
hardware acceleration. Moreover, the processing unit is also
equipped with a quad-core ARM AS57 central processing unit
and four Gigabytes of LPDDR4 RAM.

Along with the onboard processing unit, the system needs
the appropriate hardware that will enable the communication
between the onboard processing unit and the UAS. That
will enable the control of the UAS and the reception of
the telemetry data, and most importantly the camera’s feed.
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A power supply unit, which consists of a DC to DC buck
converter, lowers the power output of the UAS to the required
5 volts, 4 amperes DC for the Jetson Nano. Furthermore, a
WiFi enabling module that ROS utilizes to send and receive
data to and from the system’s observer is installed. Finally,
an SDR that is used for the self-localization and the jamming
system, is mounted at the bottom of the UAS with a custom
3D printed bracket. Figure 9 illustrates all the hardware
attached on a custom designed and 3D printed bracket
mounted on the top of the UAS, without abstracting either the
view of the cameras, nor the GPS and communication signals
of the UAS. Further, Fig. 10 shows a basic block diagram of
how all counter-drone hardware modules are interconnected.

Fig. 9: Picture of the UAS platform with all hardware

equipment attached.
(DJI Zenmuse X4S) Module
converter

Unmanned
UART to USB
adaptor

Fig. 10: Block diagram of system’s hardware implementa-
tion.

SDR
(GSG HackRF
One)

Onboard
Processing

Vehicle

Unit
(DJI Matrice 210) (NVIDIA Jetson Nano)

B. Software Integration

The onboard processing unit runs Ubuntu 18.04 LTS
which is the operating system that is compatible with all
required libraries and programming languages. Furthermore,
Ubuntu’s compatibility with ROS enables the observer’s
communication with the system. OpenCV is also compiled
along with NVIDIA’s CUDA which provides a hardware
acceleration for the detector and the tracker. The combination
of OpenCV and CUDA alongside Darknet V3 is able to
detect potentially malicious UASs at a rate of at least 15FPS.
This is a promising result for an edge computing system
running on a high resolution camera feed. Moreover, the
required software of the SDR is installed allowing the capture
of signals of opportunity for the self-localization and the
signal transmission for the jamming implementation. Finally,
the UAS’s manufactures’ SDK is employed on the processing
unit, thus giving the ability to collect various data from the
drone, including the camera stream, as well as instructing
the flight controller. The data are then utilized to feed the
detection, track, and self-localization algorithms. Hence, the
system can autonomously control the UAS, resulting in a
self-contained, autonomous, intelligent system.
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C. System Limitations

A number of tracking and interception experiments were
carried out to validate the proposed system in real-world
settings. From those experiments important insights were
gained for future improvements. For instance, using the
prescribed hardware, a maximum image processing capacity
of 30fps at 720p resolution was achieved that significantly
limited our tracking peformance especially at higher trav-
elling speeds of the drones. limits the performance of the
detector and tracking component. Moreover, the jammer
component introduces a limitation to the counter-attack range
(20m Line of sight-LoS) of the anti-drone system. Ofcourse,
this range is heavily affected by the environmental conditions
but also by the maximum transmit power which had to be
kept low due to the weight limitations of introducing larger
power amplifiers and power supplies.

VII. CONCLUSION AND FUTURE WORK

In this work, an innovative and low-cost autonomous anti-
drone system is proposed, that consists of a complete de-
tection, tracking, jamming, and relative localization system,
that can be utilized as an efficient solution for countering
rogue drone operations. Each component’s performance was
evaluated and validated through a number of experiments,
and all software and hardware modules were implemented
and tested on a commercially available UAS platform (as
indicated in www.horizon-block.com). The proposed system
was evaluated and demonstrated in a number of outdoor
experiments.

Ongoing work includes improvements of the jamming
component utilizing different techniques that can allow jam-
ming of multiple targets. In addition, improvements on de-
tection and tracking components include the expansion of the
dataset for training purposes so as to improve performance.
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