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Collaborative Exploration with a Marsupial Ground-Aerial Robot

Team through Task-Driven Map Compression

Angelos Zacharia, Mihir Dharmadhikari, and Kostas Alexis

Abstract—Efficient exploration of unknown environments is
crucial for autonomous robots, especially in confined and large-
scale scenarios with limited communication. To address this
challenge, we propose a collaborative exploration framework
for a marsupial ground-aerial robot team that leverages the
complementary capabilities of both platforms. The framework
employs a graph-based path planning algorithm to guide explo-
ration and deploy the aerial robot in areas where its expected
gain significantly exceeds that of the ground robot, such as
large open spaces or regions inaccessible to the ground platform,
thereby maximizing coverage and efficiency. To facilitate large-
scale spatial information sharing, we introduce a bandwidth-
efficient, task-driven map compression strategy. This method
enables each robot to reconstruct resolution-specific volumetric
maps while preserving exploration-critical details, even at high
compression rates. By selectively compressing and sharing key
data, communication overhead is minimized, ensuring effective
map integration for collaborative path planning. Simulation and
real-world experiments validate the proposed approach, demon-
strating its effectiveness in improving exploration efficiency while
significantly reducing data transmission.

Index Terms—Cooperating Robots, Motion and Path Planning

I. INTRODUCTION

DVANCEMENTS in robotic systems have facilitated
their deployment across a wide range of autonomous
missions. Both aerial and ground robots are now extensively
utilized for various applications, including search and res-
cue [1]], surveillance [2], inspection [J3], and exploration [4].
Efficiently exploring unknown environments remains a sig-
nificant challenge, whether navigating confined indoor spaces
or traversing expansive outdoor landscapes. Single-robot sys-
tems often encounter limitations in terms of speed, sensing
range, and their ability to navigate complex terrains. These
challenges can be effectively addressed through the deploy-
ment of heterogeneous robot teams, where the strengths of
one robot complement the limitations of the others. Marsupial
ground-aerial systems exemplify a collaborative approach,
combining the robustness and load capacity of ground robots
with the agility and three-dimensional mobility of aerial
robots. This synergy enables the strategic deployment of the
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Fig. 1. Combined map from a real-world experiment, where the marsupial
ground—aerial robot team collaborated in exploration. The aerial robot took
over after a physical obstacle (obs) prevented the ground robot’s progress.

aerial robot to efficiently explore large open spaces and high-
ceiling environments, providing rapid coverage and accessing
areas beyond the ground robot’s reach for seamless mapping.

Collaborative exploration relies on efficient data sharing
between robots. Real-time exchange of sensor data, maps, and
positions enables coordination and prevents redundant work.
However, differences in processing power, sensor types, and
communication constraints—such as limited bandwidth, high
latency, and intermittent links—pose significant challenges,
especially in complex environments.

To address these challenges, this paper presents a compre-
hensive framework that integrates planning and deployment
strategies for a marsupial ground-aerial robot team. Unlike
prior work that either focuses on communication-efficient
compression of generic point cloud data or on heterogeneous
robot coordination without scalable data sharing, our contri-
butions are twofold. First, we propose a bandwidth-efficient,
task-driven point cloud compression method tailored for vol-
umetric map reconstruction at mission-relevant resolutions.
By emphasizing occupancy-relevant structure over raw point
cloud fidelity, our approach achieves high compression rates
while retaining the information essential for planning. This
method is open-sourced at https://github.com/ntnu-arl/pcl-vae/.
Second, we introduce a decentralized collaborative explo-
ration framework that leverages the complementary capabil-
ities of a marsupial robot team. It features an aerial robot
deployment strategy, keyframe-based map sharing for coor-
dinated planning, and an energy-aware regrouping strategy.
The framework is validated in large-scale simulations and
real-world experiments, demonstrating improvements in both
exploration efficiency and bandwidth usage. More experi-
mental results from the real-world trials can be found at
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The remainder of this paper is organized as follows. Section
reviews related work on marsupial robot teams and map
compression and sharing techniques. Section details the
proposed framework, followed by evaluation studies in Section
Finally, Section [V] concludes the paper.

II. RELATED WORK
A. Marsupial Systems-of-Systems

Research in marsupial robotics, particularly ground/aerial
systems, has historically been sparse. However, recent ad-
vancements have emerged, notably through the efforts of
several teams involved in the DARPA Subterranean Chal-
lenge [5]]. The ground platforms primarily consisted of tracked
vehicles [6]], rovers [7]], or legged robots [8], while the aerial
platforms were predominantly multirotor systems. Focusing on
combined docking-and-recharging, the work in [9] integrated
a VTOL drone with a quadruped robot. Arguably the most
well-known example, the Ingenuity helicopter, has completed
multiple missions on Mars after being ferried and launched by
the Perseverance rover [10].

Beyond system design, a set of works relates to the problem
of planning for marsupial systems. These include works on
path and trajectory planning of tethered aerial-ground sys-
tems [11], [12], and stochastic assignment for the deploy-
ment of multiple marsupial robots [13[]. The deployment of
marsupial robots for multi-agent exploration is studied in [3]],
[14], [15]. In this framework, the issue of communication
constraints has repetitively attracted attention [5], [[14].

B. Point Cloud Compression and Map Sharing

A set of methods have been developed to enable efficient
point cloud compression, including both conventional and
neural strategies. Exploiting predictive deep learning models
and leveraging the image representation of LiDAR data, RID-
DLE [16] achieves high-degree of compression. The contri-
bution in [[17] exploits recurrent neural networks for efficient
compression, while the work in [[18]] leverages a convolutional
autoencoder learning compact feature descriptors from point
clouds. A survey on deep learning-based point cloud com-
pression is presented in [19]. Targeting autonomous driving,
[20] utilizes range image-based segmentation and clustering
to reduce spatial redundancy, with video coding enhancing
compression. [21] exploits spatial and temporal redundancies
in point clouds for real-time, high-efficiency compression.

Beyond the general application of compression, a niche
body of work exists focusing on compression for map shar-
ing in multi-robot operations [22]]. RecNet [23] transforms
3D point clouds into compact range image embeddings for
efficient encoding and sharing while it serves both the goal of
place recognition tasks and collaborative mapping in resource-
constrained settings. The work in [24] first maps 3D point
clouds into panoramas, uses event-triggered updates, and ap-
plies frequency-domain point cloud compression for efficient
multi-robot systems. Departing from the current state-of-the-
art, this work prioritizes a high degree of point cloud com-
pression by encoding into a latent representation that explic-
itly focuses on the information necessary to reconstruct the

occupancy map for planning and collision avoidance. While
prior methods focus on compression ratios in the order of
10x - 80x [23]]-[25]], our approach targets and achieves 300 x
compression, enabling efficient map sharing for collaborative
exploration in communication-constrained environments.

III. PROPOSED APPROACH

This section presents the proposed methodology utilized by
a marsupial robot team to collaboratively explore unknown
environments through efficient, task-driven map compression.
The team consists of a ground (legged) robot and an aerial
robot in a marsupial configuration, where the ground robot
serves as a carrier platform for the aerial system. Both
robots perform graph-based exploration path planning, with
the ground robot additionally assessing the deployment of the
aerial robot using an exploration gain mechanism. Key to
the proposed approach is a bandwidth-efficient map-sharing
solution that enables the receiving robot to reconstruct the
volumetric information acquired by the transmitting robot via
the inter-robot communication network. This reconstruction
allows the receiving robot to plan based on the volumetric map
that integrates both its locally observed data and the shared
information. To achieve this, each robot first compresses a
selective subset of the point cloud data acquired by its onboard
sensors, which is then transmitted along with the associated
estimated pose transformations (keyframes). An overview of
the proposed approach is presented in Figure 2]

A. Task-Driven Point Cloud Compression for Volumetric Map-
ping

Unlike conventional point cloud compression methods
aimed at reconstructing raw input, we propose a task-specific
solution focused on reconstructing volumetric information at
a defined voxel resolution. This enables high compression
rates by filtering out spatially insignificant details through
voxelization, aligned with mission requirements. The proposed
compression pipeline for LiDAR range data follows a two-
step procedure: i) a remapping step that accounts for voxel
map integration to retain only task-relevant information, and ii)
a custom-trained Variational Autoencoder (VAE) architecture
that jointly remaps and encodes the input range image, along
with a corresponding decoder. The proposed architecture is
shown in Figure

1) Voxel-aware Range Image Generation: Range images
and their associated point clouds capture intricate surface
geometries, especially with modern high-resolution LiDAR
sensors. However, such geometric detail imposes a challenge
for compression: high-frequency features can dominate the
latent representation z, consuming capacity that would oth-
erwise encode semantically meaningful structures. To address
this, we adopt a task-specific approach that preserves only the
information needed to reconstruct an accurate occupancy map,
rather than the full raw geometry.

We introduce a preprocessing step that converts each range
image x in the training set DD into a voxel-aware version
xv?! ¢ DU*!, which serves as the VAE training target. Each
pixel (i,7) in x is projected into 3D space using LiDAR
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Fig. 2. Overview of the proposed collaborative exploration framework with bandwidth-efficient map sharing, employed by a marsupial ground-aerial robot
team. As the ground robot explores while carrying the aerial robot, it continuously evaluates whether to deploy the aerial robot by comparing their respective
exploration gains. At the same time, it compresses sparse point clouds, generating and storing keyframes. Upon deployment, a subset of keyframes is shared
with the aerial robot to initialize its volumetric map. Both robots then explore independently, exchanging keyframes bidirectionally over the communication
network. Each robot runs its own encoder to generate keyframes and uses the other’s decoder for decompression. After a predetermined duration, both robots
return to the deployment point, concluding the mission once all keyframes have been exchanged.

intrinsics and spherical-to-Cartesian conversion. The result-
ing 3D point cloud populates a voxelized occupancy map
O € {0,1,2}Ne Ny XN= ith resolution-specific voxelization
Sval, 1abeling voxels as free (0), occupied (1), or unknown (2)
via ray casting. Rays from the LiDAR origin mark traversed
voxels as free and endpoints as occupied; untouched voxels
remain unknown. To return to a 2D form, we re-trace each ray
and assign the pixel in x¥*! the distance to the first occupied
voxel it intersects, or mark it unknown if none is found.
The resulting image appears discretized but retains meaningful
structure, filtering out irrelevant fine details while preserving
volumetric information critical for navigation and planning.
This pipeline is efficiently implemented using NVIDIA Warp
for large-scale GPU processing and performs the following
operations:

VxeD — O, Sp) + xV? e pUrt, (D

projection re-projection

2) Voxel-aware Range Image Compression: Motivated by
the overall success of VAEs and literature in task-driven
compression for collision images [26]], we utilize the VAE ar-
chitecture depicted in Figure [3]to learn how to simultaneously
remap and compress the input raw range images such that
their voxel-aware form can be reconstructed faithfully through
a particularly lightweight latent space.

Let x € D represent a range image and x*' € DV
denote its corresponding voxel-aware range image, derived
by applying the operations in Eq. (I). To enable efficient
dimensionality reduction of the input range image, we employ
a probabilistic encoding-decoding framework that leverages
the expressive power of Deep Neural Networks (DNNs) for
effective compression and simultaneously learning the voxel-
aware remapping. The probabilistic decoder py(x**!|z) gener-
ates a distribution over all possible values of x"*!, given the
latent representation z with dimensions V,. Analogously, the
probabilistic encoder g4 (z|x) learns to simultaneously encode
and remap the raw range image x to a latent distribution with
mean g € R and standard deviation o € (R*)™M:. This
distribution is then sampled using the reparameterization trick,

z = pu+0 ©e (O is the element-wise multiplication operator)
where € ~ N (Ox,,Iy,) [27]. Joint training of the encoder and
decoder networks is guided by the loss function

L= Erecon + ﬂnormLKL (2)

where Lecon denotes the reconstruction loss and Lk repre-
sents the KL-divergence loss, both defined as
‘Crecon(xuml szl ):MSE(szl szl ) (3)

Y Tecon ? Tecon
1 &
Lxu(p,0) = =5 > (1 +log(or) — pp — 7). (4)
n=1

The reconstruction loss is measured as the Mean Squared Error
(MSE) between the voxel-aware range image x"*' and the re-
constructed output x?%!  excluding contributions from invalid
pixels in the range image to ensure they do not affect the loss
calculation. The KL-divergence loss balances the trade-off be-
tween reconstruction quality and latent space regularization by
ensuring that the posterior distribution g,(z|x) remains close
to a predefined prior p(z), modeled as a standard Gaussian
N (On,,In,) [28]. The contribution of KL-divergence loss is
adjusted by the tunable hyperparameter 5yom = %, where
B =1, and H and W are the height and width of the range
image, respectively.

In the neural architecture of the trained compression model,
the encoder comprises five convolutional layers with ELU
activation functions, designed to progressively reduce the
spatial dimensions of x while increasing feature richness. At
the final stage of the encoder, a fully connected layer generates
two output vectors representing the mean g and standard devi-
ation o, which parameterize the latent space distribution. The
decoder adopts a symmetric structure to the encoder, beginning
with a fully connected layer that transforms the latent vector
z into an intermediate feature representation. This is followed
by five deconvolutional layers with ReLU activation functions
except for the final layer, which employs a sigmoid activation
function. The latter ensures that the reconstructed data matches
the range of the original data. This architecture (Fig. [3)
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Fig. 3. The proposed network architecture is tailored to compressing and remapping the range image x to a latent vector z, which is then used to generate

the reconstructed voxel-aware range image x22!

v .- The encoder-decoder scheme for ground robot {€4.Dy} and for the aerial robot {€4,D,} consists of

convolutional and fully connected layers along with activation functions. The output shape of each layer is indicated in the format C' x H x W, representing

the number of channels (C), height (H), and width (W), respectively.

achieves 2x faster inference time compared to [29], through
parameter reduction and the removal of residual layers, while
maintaining effective compression and reconstruction.

B. Collaborative Exploration

Effective exploration of complex environments requires
leveraging the strengths of heterogeneous robot teams. To fully
utilize the complementary capabilities of a marsupial ground-
aerial robot team, we propose a collaborative exploration path
planning framework, with three phases: i) pre-deployment,
ii) deployment, and iii) post-deployment, as detailed in this
section. Pseudocode is provided in Algorithm [I]

The proposed framework extends GBPlanner [4], a graph-
based exploration planner with local and global modules
using Voxblox [30] for volumetric mapping. The local planner
samples 3D points to build a dense graph Gy and computes
shortest paths ¥, via Dijkstra’s algorithm. For ground robots,
samples are projected into 2.5D to respect locomotion con-
straints. The best path oy, pes 15 selected based on exploration
gain ¢r pest. If no informative path is found, the global
planner builds a sparse graph G to guide exploration and
ensure return-to-home within endurance limits. Both robots
independently run GBPlanner as their exploration strategy.

Pre-Deployment Phase: In this phase, the ground robot
carries the aerial robot and evaluates the need for deployment
during each planning iteration to enhance exploration. Specif-
ically, the ground robot constructs a 2.5D local graph G and
identifies the optimal path Ui,bm along with the corresponding
exploration gain ¢7 1. (Algo. [1} lines 5-6) [4]. In parallel, it
generates a virtual 3D local graph G¢, which approximates
the graph the aerial robot would construct if it were deployed.
Based on the aerial robot’s sensor specifications, the ground
robot selects the vertex in G¢ with the highest exploration
gain Q_S%,best’ and designates it as the potential aerial target
point Pg.e (Algo. E lines 7-8). The proposed deployment
mechanism is triggered when the expected exploration gain in
3D significantly exceeds that in 2.5D, as defined below:

H g —YD AQ
L, if ¢L,best <e BT bests

0, otherwise,

H(d)‘%,best? (EaL,best) - &)

where a value of 1 indicates that the mechanism is trig-
gered and yp > 0 controls the deployment penalty
(Algo. [T} lines 9-10). In essence, the aerial robot is deployed
when the potential exploration gain in 3D space exceeds that
of the ground robot—even if the ground robot still has viable
exploration options. This typically occurs in environments
where the aerial robot can more efficiently explore complex
3D structures such as steep slopes, narrow passages, or large
vertical spaces beyond the ground robot’s effective reach.

Integrated with GBPlanner, the proposed compression
method and keyframing strategy enable efficient map-sharing
during and after deployment. Each robot i € {g,a} uses a
VAE {&;,D;} to encode its range image x;, derived from
point cloud P¢ projection, into a latent vector z;. Combined
with the sensor pose &) at the time of capture, this forms
a keyframe k; = {z;,&}}. A new keyframe is added to the
set K; whenever the robot’s translation or rotation exceeds
predefined thresholds 7 or 7, relative to the last keyframe
pose &i (Algo. (). The ground robot maintains its keyframe
set Ky (Algo. m line 11), and shares a subset to initialize the
aerial robot’s volumetric map upon deployment.

Deployment Phase: During the aerial robot’s deployment, a
co-localization technique —triggered only once at the deploy-
ment time —enables both robots to operate within a shared
inertial frame Z. This allows each robot to independently
update its map by incorporating both local observations and
shared data during post-deployment, while leveraging the
collaborative map-sharing solution. Consistent timestamping
across platforms—enabled by Chrony—ensures accurate and
reliable map fusion. Building on [31], the ground system
shares: a) a dense local point cloud map M, and b) its current
pose &J, which serves as an initial estimate for the aerial
robot’s localization. This enables co-localization by iteratively
aligning the aerial robot’s scan to M through point-to-line and
point-to-plane minimization. Once co-localization is achieved,
the aerial robot shares back the transform 77 between the two
LiDAR frames (Algo. [T} line 12).

After co-localization, the ground robot sends the latest
Nj keyframes to the aerial robot, which uses the ground
robot’s decoder D, to reconstruct the corresponding point
clouds. These, along with their poses, are integrated into the
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Algorithm 1 Collaborative Exploration Path Planning

Phase 1: Pre-Deployment

Require: Ground robot pose & and its point cloud P§
L&) &
2: DeploymentTriggered < false
3: while not DeploymentTriggered do

D A A

10:
11:

&) + GetCurrentConfiguration()
GY < BuildLocalGraphGroundRobot(¢()
07 pest> P hest < GetBestLocalPathAndGain(G7)
G¢ < BuildVirtual3DGraph(¢])
Pihger> O% pest < GetBestVertexAndGain(G$)
if H(d)i,best? ¢aL,best) then
DeploymentTriggered ¢ true
K, + Keyframing(g, £, &) > Algorithm

Phase 2: Deployment

12: procedure CO-LOCALIZATION((, M)
13: procedure MAP-SHARING(K,, Ny)
14: procedure TARGET-SHARING(Dggc)

Phase 3: Post-Deployment

Require: Set of robots R = {g,a}
15: while remainingTime > t; do

16:

for all i in R do
¢l « GetCurrentConfiguration()
G* < BuildLocalGraph(&))
01 pest < GetBestLocalPath(G?)
K; < Keyframing(i, &, &) > Algorithm
if 3 neighbor robot then
SendUnsharedKeyframes(K;)
if ¢ = g then > Ground Robot
K, < ReceiveKeyframes()
T, + ComputeTimesToKeyframes(K,)
SendTimesToKeyframes(T)
ReceiveRegroupingPoint()
else if i = a then > Aerial Robot
K, <ReceiveKeyframes()
T, < ReceiveTimesToKeyframes()
T, < ComputeTimesToKeyframes(K,)
Ky best < GetRegroupingPoint(T,,T,)
SendRegroupingPoint(K ncq)

34: ReturnToRegroupingPoint(G},), i € {g,a}

Algorithm 2 Keyframing

1:
2
3
4:
S:
6
7
8
9

function KEYFRAMING(, &, &1)

At, Ar <+ ComputePoseDifference(¢), &})
if At > 7 or Ar > 7, then

P <+ GetCurrentPointCloud()

x; + PointCloudProjection(P})

Z; <— 51 (Xl)

K + K; U {z;, &}

€ &6

return K,

aerial robot’s volumetric map to enable collaborative planning
(Algo. [1] line 13). The ground robot also shares the target point
Plarger> gUiding the aerial platform to its initial position. Using
its local graph G¢, the aerial robot then computes a path to the
target and initiates exploration (Algo. [I] line 14). To prevent
mapping artifacts when both robots operate in overlapping
areas, Voxblox’s TSDF integration filters out transient objects
such as the other robot by repeatedly updating free space,
ensuring only persistent structures remain in the map.

Post-Deployment Phase: After the ground robot shares
the necessary data and the aerial robot reaches its target,
both begin independent exploration. During this phase, they
exchange keyframes when within communication range 7.
and store them for later transfer when out of range. To
address endurance constraints, an energy-aware regrouping
strategy ensures both robots return to a common point before
battery depletion. A tunable time budget ¢, set below the
battery life of the robot with the least remaining capacity,
guarantees a timely return. Initially, the regrouping point is set
to the deployment location. When in communication range, the
ground robot estimates travel times T to its keyframes using
shortest paths from its global graph G{,, assuming constant
velocity, and shares them with the aerial robot (Algo. (1} lines
25-26). The aerial robot then computes its own times T,
to reachable keyframes—those with collision-free paths in
G¢—and selects a new regrouping point Ky according to
(Algo. [T] lines 30-32):

Kgpest = Ky« where k = argmin  (max{Tyq, Ta,q})
qe{lv“'t‘Kgl}
(6)

where |K| is the number of ground robot keyframes. The
aerial robot shares the selected regrouping point with the
ground robot (Algo. [T} lines 27, 33). At each planning step,
both robots estimate the time needed to complete their next
path and return. If this total exceeds the time budget, re-
grouping is triggered. The mission concludes once both robots
return to the regrouping point and exchange all remaining data
(Algo. [1] lines 34).

IV. EVALUATION STUDIES

A marsupial ground-aerial robot team was employed to eval-
uate the proposed approach in both simulation and real-world
experiments. The team consists of a legged ground robot,
ANYmal-D, and a aerial robot, RMF-Owl [32], operating
in a marsupial configuration (Fig. [[). ANYmal-D measures
0.93 m x 0.53 m x 0.80 m (L x W x H), is equipped with
a Velodyne VLP-16 LiDAR (FoV: [360°, 30°], range: 100 m),
and serves as a carrier platform. It runs on 2x 8th Gen Intel
Core™ i7 CPUs. RMF-Owl features a collision-tolerant frame
(0.38 m x 0.38 m x 0.24 m) and an Ouster OS0-64 LiDAR
(FoV: [360°, 90°], range: 50 m), powered by a Khadas VIM4
with 4x 2.2GHz Cortex-A73 and 4x 2.0GHz Cortex-A53
cores. It is mounted on the ground robot via a dedicated
marsupial mechanism. Each robot is pre-equipped with its own
trained VAE encoder for data compression and uses the other
robot’s decoder for decompression. Communication is handled
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over WiFi using the NimbRo framework. All processes—co-
localization, map sharing, target sharing, and collaborative
exploration—run fully onboard and in real time.

A. Training Methodology

To account for differences in LiDAR characteristics, sepa-
rate VAE models were trained on platform-specific datasets
composed of simulated and real-world range images from
diverse environments, including caves, confined spaces, and
complex buildings. The aerial dataset included ~ 36,000
images (~ 26,000 simulated), while the ground dataset had
~ 25,000 (~ 21,000 real). Each model was trained indepen-
dently for 20 epochs using the Adam optimizer (learning rate
10~4, batch size 16), with a 90% — 10% train-test split.

B. Ablation Study

An ablation study was conducted to evaluate the effects
of latent dimensionality and voxel resolution on volumetric
map reconstruction. VAE models were trained with latent
sizes N, € {32,64,128,256,512,1024} and voxel sizes
sya € {0.2,0.3,0.4}m for both robots. As shown in
Figure [, the overall loss decreased with larger latent sizes,
reaching a minimum at 256, then increased due to rapidly
growing KL divergence, which led to over-regularization and
degraded reconstruction quality [28]].

To assess how well compressed data retains task-relevant
spatial information, we introduce an occupancy similarity
metric, which compares voxel-wise occupancy between maps
generated from original and reconstructed range images using
a k-nearest voxel approach. This metric reflects planning
utility more directly than image-space fidelity. As shown
in Figure @b, occupancy similarity trends align with recon-
struction loss, peaking at latent sizes of 256 (aerial) and
512 (ground), indicating that 256 is the smallest latent size
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TABLE I
PARAMETERS FOR BOTH EXPERIMENTS

Parameter Ground Robot Aerial Robot
Size of range image x (H x W) 16 x 1800 64 x 512
Voxel size Sy z1 0.2 cm 0.2 cm
Maximum range of image riri?lgx 20 m 20 m
Latent space size [N, 256 256
Deployment sensitivity vp 3.5/4.5 -
Translation threshold 7 2.0m 3.0m
Rotation threshold 7, 0.785 rad 0.785 rad
Number of keyframes Ny, C Ky 300/ 10 -
Communication range 7. 50 m/ 10 m 50 m/ 10 m
Time budget ¢ 2000 s /300 s 2000 s /300 s
Nominal speed 0.7 m/s 1 m/s

Parameters of simulation and real-world experiments, represented as a / b for
distinct values, or as ¢ for common values.

offering a strong trade-off between spatial consistency and
bandwidth. This supports our choice to remap data into a
voxel-aware format and evaluate models using both image and
task-specific metrics. The approach achieves high compression
rates—337 : 1 (ground) and 384 :1 (aerial)—enabling low-
bandwidth communication (e.g., LoRa) for real-time multi-
robot coordination in challenging environments.

C. Simulation Studies

We validated our approach using a large-scale Gazebo
simulation in a multi-level building with interconnected rooms,
hallways, stairs, and ramps. The marsupial ground—aerial team
coordinated successfully, meeting at an intermediate location
to reduce return times and improve energy efficiency via the
proposed opportunistic regrouping strategy. Robot behavior
and sensors were accurately modeled using the ANYmal and
RotorS simulators (see Sec. [[V). Figure 5] shows the collabora-
tively explored volumetric maps, including key elements such
as local and virtual graphs, deployment/regrouping points,
shared maps, keyframes, and onboard representations. Co-
localization was unnecessary as both robots operated in a
shared reference frame provided by the simulation environ-
ment. The effectiveness of data sharing is highlighted by
pivot points where the aerial robot redirected to unexplored
areas after detecting overlap with the ground robot’s map.
The visible differences between the original and reconstructed
range images (Fig. 5, 5a—5b) stem from the task-driven VAE’s
high compression ratio, which prioritizes occupancy-relevant
features over raw geometric detail. Table [[]lists the mission pa-
rameters used during the 42-minute operation, which included
12 minutes in marsupial mode and 30 minutes of independent
exploration per robot. Table [lIf presents how compression and
keyframing techniques contributed to bandwidth reduction.
Latent encoding significantly lowers data rates, and keyfram-
ing ensures only essential updates are shared, minimizing
communication overhead for bandwidth-constrained scenarios.

D. Experimental Results

To demonstrate the applicability of the proposed method,
we conducted real-world experiments in a multi-storey uni-
versity building using a marsupial ground-aerial robot team.
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The ground robot was equipped with a custom 3D-printed
deployment mechanism (Fig. [I), featuring a flat platform, mo-
torized brackets powered by ANYmal, and a secure mounting
system for the aerial robot. The mission began at a designated
start point, with the team exploring until the ground robot
encountered an untraversable area due to a physical obstacle
(marked “obs” in Fig.[6), triggering aerial deployment. During
deployment, co-localization, map sharing, and target sharing
were performed. The aerial robot processed each received
keyframe in 100 ms. After deployment, both robots explored
independently, exchanging data when within network range.
Upon regrouping, they returned to the deployment point as
they were out of range and completed the mission by merg-
ing their explored maps. The differences between original
and reconstructed range images (Fig. [0} 4c—4d) reflect the
aggressive task-driven compression, which retains mapping-
relevant structure over visual detail. Portions of the drone
cage visible in the aerial images were masked and inpainted
prior to encoding to avoid corrupting the latent space. The
mission lasted 10 minutes, during which the ground and aerial
robots explored approximately ~ 6,600 m® and ~ 7,500 m?3,
respectively. Table [I] summarizes mission settings. For each
keyframe, generation took 10 ms on the ground robot and
400 ms on the aerial robot, with data rates of 0.187 kB/s and
0.276 kB/s, respectively. Figure [6] illustrates key stages of the
collaborative exploration process.

Simulation and real-world results show that the proposed
framework scales well in distance and application scope. The
energy-aware regrouping enables flexible coordination without
returning to the deployment point if it is possible, supporting

TABLE II
QUANTITATIVE COMPARISON OF DATA TRANSMISSION RATES

Transmission Mode Data Rates (kB/s)

Raw point cloud transmission (10 Hz) 3375
Keyframed raw point cloud transmission 58.387
Latent vector transmission (10 Hz) 10
Keyframed latent space transmission 0.173

longer missions. Its modular design and bandwidth-efficient
map sharing make it suitable for scenarios like subterranean
exploration, industrial inspection, and disaster response in
GPS- or communication-limited environments.

V. CONCLUSION

In this paper, we presented a collaborative exploration
approach for a marsupial ground-aerial robot team. Through
a bandwidth-efficient, task-driven map-sharing solution, both
robots can plan based on not only their local observations
but also on shared information, enabling more efficient ex-
ploration. An ablation study further highlights the trade-
off between the size of shared data and the quality of the
reconstructed environment. Both simulation and real-world ex-
periments were conducted to validate the proposed approach.

REFERENCES

[1] J. Delmerico et al., “The current state and future outlook of rescue
robotics,” Journal of Field Robotics, vol. 36, pp. 1171-1191, 2019.

[2] B. Grocholsky et al., “Cooperative air and ground surveillance,” IEEE
Robotics and Automation Magazine, vol. 13, no. 3, pp. 16-25, 2006.



Collaborative Exploration

Ground Robot
=" Local Graph

o

IEEE ROBOTICS AND AUTOMATION LETTERS. PREPRINT VERSION. ACCEPTED SEPTEMBER, 2025

Marsuplal
Robot Team
Trajectory
Ground Robot
Trajectory
Aerlal Robot
Trajectory

«2+ Ground Robot

** Polnt Cloud Map

Aerlal Robot
Point Cloud Map

Deployment &
Regrouping Point

Deployment View 2
w

£

iy 75 IR

ﬁ Ground Robot Virtual Aerial Robot Aerial Target
Keyframe Local Graph Point

.2+ Ground Robot
*3* submap

Post-Deployment Phase: Ground Robot

Aerlal Robot
Localized Map

Post-Deployment Phase: Aerial Robot
] Instance of Environment Representation

Regrouping
Triggered
) e

.+ Keyframes / Regrouping Path

Deployment Phase

. Map-Sharing
= Forss %

! &

Aerial Target Point
- = 1

Aetig!

Ta rget-sﬁ'a}vh = MT
| -

i

1
De'ployment
Point

+*. Initial Aerial Robot
Point Cloud Map

Aerial Rol
Commandgd Path
;. Aerial Robol

: y Ground
2t Robot
Point Cloud Map -

Fig. 6. Experimental results from the collaborative exploration of the marsupial ground-aerial robot team in a multi-storey university building. The combined
map, explored by both robots, is shown in (1) and highlights the start, deployment, and regrouping points. The ground and virtual aerial planning graphs,
generated during the pre-deployment phase and used to trigger deployment, are depicted in (2a)—(2b). The processes of co-localization during the aerial robot
deployment (3a), map-sharing (3b), and target-sharing (3c) are also presented. The individual exploration maps along with regrouping path are illustrated in
(4a)—(4b). An instance of the aerial robot’s range image (4c), the associated reconstructed image on the ground robot (4d), and the corresponding point clouds
(4e) are provided.

[3]

[9]

[10]

(1]

[12]

[13]

[14]

[15]

[16]

[17]

[18]

M. Dharmadhikari et al., “Semantics-aware exploration and inspection
path planning,” in 2023 IEEE International Conference on Robotics and
Automation (ICRA), 2023, pp. 3360-3367.

M. Kulkarni et al.,, “Autonomous teamed exploration of subterranean
environments using legged and aerial robots,” in 2022 International
Conference on Robotics and Automation (ICRA), 2022, pp. 3306-3313.
T. H. Chung et al., “Into the robotic depths: analysis and insights from
the darpa subterranean challenge,” Annual Review of Control, Robotics,
and Autonomous Systems, vol. 6, no. 1, pp. 477-502, 2023.

N. Kottege et al., “Heterogeneous robot teams with unified perception
and autonomy: How team csiro data61 tied for the top score at the darpa
subterranean challenge,” Field Robotics, pp. 313-359, 2024.

C. Cao et al., “Exploring the most sectors at the darpa subterranean
challenge finals,” Field Robotics, 2023.

P. De Petris et al., “Marsupial walking-and-flying robotic deployment
for collaborative exploration of unknown environments,” in 2022 IEEE
International Symposium on Safety, Security, and Rescue Robotics
(SSRR). 1EEE, 2022, pp. 188-194.

B. Moore et al., “Combined docking-and-recharging for a flexible
aerial/legged marsupial autonomous system,” in 2023 IEEE Aerospace
Conference. 1EEE, 2023, pp. 1-9.

J. Balaram et al., “The ingenuity helicopter on the perseverance rover,”
Space Science Reviews, vol. 217, no. 4, p. 56, 2021.

S. Martinez-Rozas et al., “Path and trajectory planning of a tethered uav-
ugv marsupial robotic system,” IEEE Robotics and Automation Letters,
2023.

J. Capitén et al., “An efficient strategy for path planning with a tethered
marsupial robotics system,” arXiv preprint arXiv:2408.02141, 2024.

C. Y. H. Lee et al, “Stochastic assignment for deploying multiple
marsupial robots,” in 2021 International Symposium on Multi-Robot and
Multi-Agent Systems (MRS). 1EEE, 2021, pp. 75-82.

M. S. Couceiro et al., “Marsupial teams of robots: deployment of minia-
ture robots for swarm exploration under communication constraints,”
Robotica, vol. 32, no. 7, pp. 1017-1038, 2014.

G. Best et al., “Multi-robot, multi-sensor exploration of multifarious
environments with full mission aerial autonomy,” The International
Journal of Robotics Research, vol. 43, no. 4, pp. 485-512, 2024.

X. Zhou et al., “Riddle: Lidar data compression with range image
deep delta encoding,” in Proceedings of the IEEE/CVF Conference on
Computer Vision and Pattern Recognition, 2022, pp. 17212-17221.

C. Tu et al., “Point cloud compression for 3d lidar sensor using recurrent
neural network with residual blocks,” in 2019 international conference
on robotics and automation (ICRA). 1EEE, 2019, pp. 3274-3280.

L. Wiesmann et al., “Deep compression for dense point cloud maps,”
IEEE Robotics and Automation Letters, vol. 6, pp. 2060-2067, 2021.

[19]

[20]

[21]

[22]

(23]

[24]

[25]

[26]

[27]

(28]

[29]

[30]

[31]

(32]

M. Quach et al., “Survey on deep learning-based point cloud compres-
sion,” Frontiers in Signal Processing, vol. 2, p. 846972, 2022.

X. Sun et al.,, “A novel point cloud compression algorithm based on
clustering,” IEEE Robotics and Automation Letters, vol. 4, no. 2, pp.
2132-2139, 2019.

Y. Feng et al., “Real-time spatio-temporal lidar point cloud compres-
sion,” in 2020 IEEE/RSJ international conference on intelligent robots
and systems (IROS). 1EEE, 2020, pp. 10766-10773.

M. T. Lazaro et al., “Multi-robot slam using condensed measurements,”
in 2013 IEEE/RSJ International Conference on Intelligent Robots and
Systems. 1EEE, 2013, pp. 1069-1076.

N. Stathoulopoulos et al., “Recnet: An invertible point cloud encoding
through range image embeddings for multi-robot map sharing and
reconstruction,” in 2024 IEEE International Conference on Robotics and
Automation (ICRA), 2024, pp. 4883-4889.

L. Zheng et al., “Real-time efficient environment compression and
sharing for multi-robot cooperative systems,” IEEE Transactions on
Intelligent Vehicles, 2024.

Y. Cao et al., “Real-time lidar point cloud compression and transmis-
sion for resource-constrained robots,” arXiv preprint arXiv:2502.06123,
2025.

M. Kulkarni et al., “Task-driven compression for collision encoding
based on depth images,” in Advances in Visual Computing. ~ Cham:
Springer Nature Switzerland, 2023, pp. 259-273.

D. P. Kingma et al., “Auto-encoding variational bayes,” arXiv preprint
arXiv:1312.6114, 2022.

I. Higgins et al., “beta-VAE: Learning basic visual concepts with
a constrained variational framework,” in International Conference on
Learning Representations, 2017.

M. Kulkarni er al., “Semantically-enhanced deep collision prediction
for autonomous navigation using aerial robots,” in 2023 IEEE/RSJ
International Conference on Intelligent Robots and Systems (IROS),
2023, pp. 3056-3063.

H. Oleynikova et al., “Voxblox: Incremental 3d euclidean signed dis-
tance fields for on-board mav planning,” in 2017 IEEE/RSJ International
Conference on Intelligent Robots and Systems (IROS), 2017, pp. 1366—
1373.

S. Khattak et al., “Complementary multi-modal sensor fusion for
resilient robot pose estimation in subterranean environments,” in 2020
International Conference on Unmanned Aircraft Systems (ICUAS), 2020,
pp. 1024-1029.

P. D. Petris et al., “Rmf-owl: A collision-tolerant flying robot for
autonomous subterranean exploration,” in 2022 International Conference
on Unmanned Aircraft Systems (ICUAS), 2022, pp. 536-543.



	Introduction
	Related Work
	Marsupial Systems-of-Systems
	Point Cloud Compression and Map Sharing

	Proposed Approach
	Task-Driven Point Cloud Compression for Volumetric Mapping
	Voxel-aware Range Image Generation
	Voxel-aware Range Image Compression

	Collaborative Exploration

	Evaluation Studies
	Training Methodology
	Ablation Study
	Simulation Studies
	Experimental Results

	Conclusion
	References

